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1. Introduction 

The usefulness of the many-body perturbation theory (MBPT) methods [1] in 
calculations of atomic and molecular correlation energies is already well estab- 
lished [2, 3]. More recent studies [2, 4-9] show that MBPT techniques can also 
be made highly efficient in calculations of the electron correlation contribution 
to atomic and molecular properties. The analysis [10] of different formulations 
of the pertinent perturbation problem indicates several advantages of the MBPT 
scheme based on what is known as the coupled Hartree-Fock (CHF) [11, 12] 
solution for the externally perturbed system. The calculation of diagrammatic 
contributions [6, 10, 13] to the electron correlation corrections for atomic and 
molecular properties can be most easily accomplished by using the finite-field 
perturbation theory (FPT) [14]. Over the past few years the FPT MBPT method 
has been successfully employed to study the correlation contribution to electric 
properties of atoms and molecules [4-10, 15-23]. In most cases the correlation 
perturbation series converges relatively fast [6, 7, 10] and the fourth-order 
approach appears to provide sufficiently high accuracy of the calculated proper- 
ties. It has also been found that limiting the intermediate states to those which 
arise from single (S) and double (D) substitutions in the reference HF 
determinant (SD-MBPT) [9] represents a convenient and fairly accurate 
approximation. 

Some attention has recently been given to the accurate prediction of electric 
dipole polarizabilities of negative atomic ions [5, 21-24]. The main purpose of 
these studies is to estimate theoretically the so-called free negative ion 
polarizabilities whose direct experimental determination is hardly possible [25]. 
Their empirical estimates are affected by different assumptions concerning the 
effects of the surrounding [25, 26] in solutions and crystals. On the other hand, 
the corresponding theoretical data obtained so far are not conclusive as well. 
Obviously, they indicate the importance of the electron correlation contribution 
to the dipole polarizability of negative ions [5, 22-24]. However, in most cases 
the precise value of this contribution remains still uncertain [22, 24]. The only 
accurate data are available for two-electron isoelectronic systems [27] and the 
comparison of the correlation contribution to the dipole polarizability of Li § 
He, and H-  [5, 27] reveals that the CHF results for negative ions are rather 
doubtful. The same conclusion appears to apply also to halide ions [5, 21-24]. 

Accurate theoretical studies of electric properties of negative ions require a 
rather careful consideration of both the basis set choice and the convergence of 
the correlation perturbation series. The selected basis set must be appropriate 
for describing the diffuse character of the negative ion density distribution and 
its polarization due to the external electric field [5, 22, 24]. Simultaneously, 
within the algebraic approximation to the MBPT scheme [3] the same basis set 
must recover the most important correlation effects. The convergence of the 
correlation perturbation series for polarizabilities of negative ions appears to be 
much poorer [22, 24] than that for neutral species [6-9]. For this reason the 
study of the nuclear charge dependence of different correlation corrections within 
the isoelectronic series might be quite useful. 
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In the present paper we report the results of our SD-MBPT calculations of the 
electric dipole polarizability for the series of 10-electron atomic systems. This 
series includes Na § Ne, and F-  and some systems with non-integer nuclear 
charge and allows for a closer examination of the nuclear charge dependence 
of the CHF polarizabilities and the different correlation corrections. The main 
attention is given to the convergence of the correlation perturbation series and 
the usefulness of the low-order perturbation approaches. The theory underlying 
the present calculations is briefly surveyed in the next section and followed by 
some details of the numerical calculations reported in this paper. The results 
and their discussion are given in Section 4 and the main conclusions which follow 
from our study are presented. 

2. Theory 

The theory underlying the SD-MBPT approach for the calculation of correlation 
corrections to electric properties of many-electron systems has been given a 
detailed consideration in our previous paper [9] and only the basic definitions 
and formulae will be summarized here. Our notation closely follows that 
employed previously [9]. 

We consider a many-electron-system embedded in the external electric field 
whose strength is denoted by /z. We assume that an acceptable zero-order 
approximation is given by the HF model. The exact/z-dependent energy of the 
system, E (/z), can be expanded into the following correlation perturbation series 
[9, 10]: 

E(/z) = EHF(/Z) +E2(/z) +E3(/z) +Ea(/z) +" " ", (1) 

where EHF(/z) is the/z-dependent HF energy and En (/Z), n = 2, 3, 4 . . . .  , denote 
the n-th order/z-dependent correlation energies. What is called the k-th order 
property of the system related to the given external perturbation is represented 
by the quantity Q which is proportional to the k-th order perturbed energy [28]: 

0 E - ! - k ! ~  O/z k J,=0" (2) 

According to this definition different approximations to E(/z) lead to the corres- 
ponding approximate values for the property Q. In what follows we shall use 
the same set of subscripts and superscripts for both E and O, though as a matter 
of fact their explicit meaning may only be applicable to the energy expansion. 

The diagrammatic MBPT approach to the evaluation of the correlation energy: 

E . . . .  (/z) = E2(/z) + E3(/Z) + E4(/Z ) + ' " ,  (3) 

is primarily based on the so-called linked cluster theorem [29]. According to 
this theorem the correlation perturbation series (3) is expressible solely in terms 
of linked [1 ] (conjoint [3 0]) diagrams. Disjoint diagrammatic contributions which 
may appear in intermediate energy expressions must be exactly cancelled out 
by other terms. This is so, provided the set of intermediate states is complete. 



488 G.H.F. Diercksen et al. 

On restricting the intermediate states to some selected classes of substitutions 
in the reference HF determinant one can satisfy the linked cluster theorem only 
by neglecting all non-cancelled disjoint diagrams. 

In the SD-MBPT scheme [2, 31-33] the intermediate states comprise all deter- 
minants that can be obtained by single and double substitutions in the reference 
HF function. Hence, 

E 2 ( / z  ) = E SD-MBPT (/2,) = E D (/3,), ( 4 a )  

Ea(/z) = E sD-MBPT (/z) = E D (/x), (4b) 

and 

EsD MBPT(/Z) SD ~- = E ,d  (tz), n = 4, 5, 6 . . . . .  (4c) 

where the superscripts S and D refer to the type of, excitations involved in 
intermediate states and the subscript " d "  distinguishes what is called the direct 
part of the nth order term [1, 9, 34]. In comparison with the ordinary Rayleigh- 
Schr6dinger perturbation theory (RSPT) based on the same class of intermediate 
states (SD-RSPT) the SD-MBPT approach neglects all renormalization terms 
[31-34]. Nonetheless, the SD-MBPT scheme can be given a firm variational 
background [23, 35]. By including the renormalization terms E,rSD (/z) one obtains 
the subsequent approximations to the result of the configuration interaction 
scheme based on single and double excitations (SD-CI), i.e., 

. = t~ .  ttz)-r t : , r  t/z), n = 4 , 5 , 6  . . . . .  (5) 

However, the renormalization terms involve disjoint diagrams and result in the 
size-inconsistency of the SD-CI approach [2]. The size-inconsistent contribution 
to the property values can be quite important [36] and can be partly removed 
from the SD-CI results by using approximate corrections due to Davidson [37] 
and Siegbahn [38]. 

It is worth while to define several partial sum approximations to the total 
correlation energy. The nth order approximation to Eq. (3) obtained according 
to the method X will be 

X E .... E ,%,) ,  (6) 
i=2 

and similarly 

OXrr(") -- O L  (7) 
i=2 

where the separate terms in Eq. (7) are defined with the aid of Eq. (2). The 
SD-CI correlation energy and the corresponding property values are denoted 

rTSD-CI i \ /,,,)SD-CI by ~ ... .  K/z) and . . . . . .  respectively. On adding Davidson's energy correction, 
ED(/Z), o n e  obtains [36, 37]: 

E SD-CI/D (/A,) SD-CI . . . .  ~ E  . . . .  (tx)AvED([,s (8)  
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while the next term due to Siegbahn, E s ( l ~ ) ,  gives [36, 38]: 
ESD-CI/DS / ~ SD-CI/D + 

. . . .  ~[&)=E . . . .  (/s Es(u). (9) 

Analogous expressions are employed for the corresponding approximations 
to Ocorr. 

The total energy and property values following from the partial summation of 
the correlation perturbation series will be denoted by similar symbols without 
the subscript "corr". The leading term in these expressions is the HF value. In 
the case of properties it corresponds to the result of what is known as the CHF 
approximation [6, 9, 10]. Hence, the correlation effects involved in Q .... rep- 
resent solely the "true" correlation contribution to a given property [10]. All 
self-consistency terms are accounted for in QHF = QCHF [10, 12], and 

O = Q C H F + Q 2 + Q 3 + "  �9 �9 �9 (10) 

Some advantages of this formulation of the correlation perturbation series for 
properties have already been discussed [10]. In comparison with the ordinary 
double perturbation treatment of correlation contributions to properties [39-41] 
the first non-vanishing correlation correction in the CHF-based perturbation 
schemes is of the second-order in the correlation perturbation [4-10, 13, 17, 
18]. Hence, in the CHF-based approach the calculation of correlation contribu- 
tions corresponds to the same level of accuracy as in the case of correlation 
corrections to the HF energy. 

Usually the final result computed for E . . . .  (Q . . . .  ) amounts to the knowledge of 
a few lowest-order terms in the perturbation expansion. The truncated correlation 
series can be approximately summed up by using different methods. In most 
cases improved results are obtained by applying the method of Pad6 approximants 
[42, 43]. Particular attention has been given to the [2/1] Pad6 approximant to 
the series (3): 

E .... (/z, [2/1]) = [1 - E 3 ( l z ) / E 2 ( I ~ ) ] - I E e ( I z ) .  (11) 

This result is usually referred to as the geometric approximation to the correlation 
energy [44, 45] and has certain interesting invariance features [43, 46]. Moreover, 
Eq. (11) can be given a firm variational justification [23]. Its differentiation with 
respect to tz leads to Q . . . .  ([2/1]). The latter result should be distinguished from 
that following from the direct application of the [2/1] Pad6 approximant to the 
property correlation series [15, 22, 23]. 

Interesting results can also be obtained [9, 21, 24] by using the invariant fourth- 
order quantity introduced recently by Wilson [46]: 

E . . . .  (/,s 4 )  = E . . . .  (/LL, [ 2 / 1  ]) + [ E  . . . .  (/.6, [ 2 / 1 ] ) / E 2 ( / z  )33[E4(/~ ) - E 2 ( / . I . ) /E2(/z )3, 
(12) 

where all terms are replaced by their SD-MBPT counterparts. The corresponding 
approximate value of Q .... calculated according to Eq. (2) will be denoted by 
O .... (4). This completes the survey of basic formulae and definitions which are 
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referred to in subsequent sections of this paper. More details can be found in 
our previous papers [9, 10, 21, 24, 47, 48]. 

3. Computational Details 

In order to study the nuclear charge dependence of correlation corrections to 
the CHF polarizability of 10-electron systems the calculations have been carried 
out for several different values of the nuclear charge Z. In addition to the study 
of F- (Z=9) ,  Ne (Z= 10), and N a + ( Z = I [ )  we have also performed the 
corresponding calculations for Z = 9.2, 9.4, 9.6, and 9.8. A rather dense grid 
of points in the range between Z =9.0 and Z = 10.0 allows for a careful 
examination of the pertinent Z-dependence in this region. However, all calcula- 
tions must be performed in such a way that the accuracy of the polarizability 
data obtained in the FPT SD-MBPT approach is practically independent of the 
value of Z. This brings about the problem of the appropriate choice of both the 
basis set functions and the field strength /~ which is employed to obtain the 
field-dependent energies. 

3.1. Basis Sets 

Since all calculations reported in this paper are carried out within what is known 
as the algebraic approximation scheme [3, 49], the appropriate choice of the 
basis set functions is of particular importance. The basic quantity which is 
computed within the FPT method is the field-dependent correlation energy. 
Hence, the selected basis set must recover a considerable portion of the total 
atomic correlation energy. Additional requirements concerning the basis set 
functions follow from the fact that the main object of this paper is the calculation 
of correlation corrections to polarizabilities. Hence, the basis sets employed for 
this purpose must be flexible enough to represent properly the electron density 
polarization due to the external electric field. 

Several different strategies have been proposed over the past few years as regards 
the basis set choice for the calculation of atomic and molecular polarizabilities 
including the correlation effects [50-56]. According to these proposals one can 
either use a large basis set with several diffuse and polarisation functions [50, 
51, 53, 54] or one can employ more standard bases of moderate size which 
explicitly depend on the external field strength [52, 55, 56]. The latter choice 
has already been shown to be very efficient in calculations of correlation correc- 
tions to the dipole polarizability of the fluoride ion [5, 22, 23]. However, the 
corresponding computations require "a little more effort concerned with the 
optimization of what is called to orbital origin shift parameter [52, 57]. Hence, 
in some cases it is more convenient to use large field-independent bases. 

All calculations reported in this paper have been carried out by using uncontrac- 
ted GTO basis sets comprising 13 s-type functions, 9 p-type functions and 5 
d-type functions. For all values of Z the corresponding GTO exponents have 
been derived from the GTO exponents of the (11.7) GTO basis sets of Huzinaga 
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[58]. The latter are available only for neutral atoms. The first step in attempting 
to produce the basis sets which may provide a fairly uniform accuracy for all 
values of Z considered in this paper was to obtain the initial (11.7) sets for 
non-integer nuclear charges. This has been done by using a parabolic approxima- 
tion formula based on the energy optimized exponents for O, F, and Ne. The 
corresponding parameters derived from Huzinaga's Tables [58] are given in 
Table 1. 

The final (13.9.5) GTO basis sets have been derived from the (11.7) GTO bases 
by using method similar to that employed by Werner and Meyer [50, 51]. Two 
diffuse s-type GTO's have been added to the s subset; the corresponding orbital 
exponents, st(s12) and ~r(s13), being equal to 1/2.5 and 1/2.52 of the lowest s-type 
GTO exponent (((s11)) of the initial basis set, respectively. The p subset has 
also been augmented with two additional p-type GTO's, whose exponents ((P8) 
and ((p9) are derived in the same way from the lowest orbital exponent ~'(P7) 
of the initial subset of p-type GTO's, i.e. ( (Ps )=  ((p7)/2.5, if(P9)= ((p8)/2.5. 
The (13.9) GTO bases devised according to the above scheme have been 
supplemented with 5 d-type GTO's, whose orbital exponents ((dl) . . . . .  ~r(d5) 
are obtained from the second lowest orbital exponent (((ps)) in the corresponding 

Table 1. Parameters of the parabolic fit ( ( Z ) = ~ o + ~ l ( Z - 9 ) + ~ 2 ( Z - 9 )  2 used to determine the 
GTO exponents ~" for different values of the nuclear charge Z a 

GTO ~'o st1 ~'2 

s-type GTOs 

1 37736.00 9174.852 2103.355 
2 5867.0791 1399.9229 106.0452 
3 1332.4679 311.81665 8.90115 
4 369.44060 87.53996 4.00410 
5 116.84300 27.677051 1.203629 
6 40.348770 9.574576 0.445384 
7 14.966270 3.598339 0.239835 
8 5.8759295 1.43368915 0.15051915 
9 1.6533352 0.41362395 0.03146035 

10 0.61083583 0.156342185 0.017646525 
11 0.23328922 0.057854195 0.003530315 

p-type GTOs 

1 102.26192 25.6735985 2.1146215 
2 23.938381 6.0832385 0.5541185 
3 7.5205914 1.9492871 0.1817792 
4 2.7724566 0,72478335 0.06303815 
5 1.1000514 0.288275615 0.025345085 
6 0.44677512 0.116764075 0.009065255 
7 0.17187009 0.041701040 0.002094050 

a The parameters correspond to the GTO exponents of the (11.7) basis set. For the determination 
of additional s- and p-type GTO exponents as well as for the d-type GTO exponents of the (13.9.5) 
basis set see text 
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subset of p-type GTO's: ~'(d0 = 32~'(p8), ~'(d2)= 9ff(p8), ((d3)= 3~'(p8), ~(d4)= 
~'(P8), and ((d5)= ~'(p8)/3. The scheme used to derive the GTO exponents for 
the d subset follows that of Werner and Meyer [50, 51]. 

Adding several diffuse s and p functions to the initial (sp) set allows for a reliable 
description of the outer region of the electron density distribution. This is of 
particular importance in the case of the fluoride ion. The use of diffuse functions 
for the Na § ion is definitely less important. The d-type orbital exponents are 
selected according to both the correlation energy and polarizability criteria 
[50, 51] and the corresponding functions are presumably of similar importance 
for all 10-electron systems considered in this paper. A useful check on the quality 
of basis sets derived for the present study can be obtained by computing the 
CHF polarizabilities for F-, Ne, and Na § For all these systems accurate near-HF 
data are available. According to the results presented in the next section our 
(13.9.5) GTO basis sets give the electric dipole polarizability values very close 
to the corresponding most accurate CHF results. At the same time they recover 
a considerable portion of the total correlation energy. 

Let us also mention that different studies for similar systems [59, 60] indicate 
that including the f-type GTO's in the basis set has only little effect 
on the calculated polarizability values. Thus, the present (spd) bases are 
expected to provide a high accuracy for correlation corrections to the CHF 
polarizabilities. 

3.2. FPT Calculations of Dipole Polarizabilities 

The method of computing the dipole polarizabilities according to the FPT scheme 
has already been described in our previous papers [9, 21, 24, 36, 47] and follows 
the methods employed by the other authors [ 14, 61 ]. In principle all polarizability 
data are obtained as the second-order numerical derivatives of the field-depen- 
dent energy. In the case of the SCF HF results the corresponding numerical 
CHF polarizability values can be checked against those obtained as the first-order 
derivatives of the induced dipole moment. However, this procedure is not 
applicable in the case of the SD-CI data [20] since limited CI wave functions 
do not satisfy the Hellmann-Feynman theorem [62]. Moreover, computing the 
polarizability as the field-dependent energy derivative appears to be the only 
feasible way for the CHF-based MBPT scheme and similar perturbation 
approaches [8, 10, 17, 18]. 

The numerical differentiation of field-dependent energies brings about the prob- 
lem of contamination of the calculated polarizability values by the hyperpolariza- 
bility terms. However, according to the present experience in most cases this 
contamination does not seriously affect the calculated polarizabilities provided 
the values of the external field strength are carefully selected. All results reported 
in this paper have been obtained by using the parabolic fit to the field-dependent 
energies E(/x) with the value of/x adapted to the nuclear charge of the given 
system. 
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It follows from our previous calculations for the fluoride ion [5, 22-24] that the 
contamination by the hyperpolarizability contribution is relatively small if the 
parabolic fit for E(/x) is obtained with ~ = 0.005 a.u. The dipole polarizability 
of the fluoride ion calculated in this way has an accuracy better  than 2 x 10 -2 a.u. 
For systems with higher values of Z the dipole polarizability is obviously much 
smaller than that for F-.  Hence,  to achieve the same absolute accuracy of the 
numerical differentiation one has to use higher values of the external electric 
field strength. By comparing the known CHF polarizabilities of F-,  Ne, and Na § 
one can guess the appropriate value of/x for each system studied in this paper. 
According to this comparison the following form of the Z-dependence  of /z  has 
been assumed: 

tx(Z) = 0.005 + 0.005(Z-9) a.u. (13) 

in the range 9.0 -<Z - 10.0, while for Na*/z  = 0.020 a.u. has been used. 

In order  to determine the appropriateness of the above field strength values 
the CHF dipole polarizabilities have been calculated as the energy derivatives 
and as the dipole moment  derivatives. The corresponding results are shown in 
Table 2. In the same table our CHF results are compared with other accurate 
CHF data for F-,  Ne and Na § A very good agreement of our CHF values with 
the most accurate CHF polarizabilities obtained by using different methods 
shows also the appropriateness of the present basis sets. 

Finally, let us mention that all calculations reported in this paper have been 
carried out by using a combination of the MUNICH Molecular Program System 
[63] and the direct CI program of Roos [64, 65]. Some additional details concern- 
ing the numerical calculations can be found in Refs. [8, 9] and [22-24]. 

4. Results and Discussion 

4.1. Correlation Energies 

Since the present report  is mainly concerned with the nuclear charge 
dependence of dipole polarizabilities we avoid a more extensive presentation 
and discussion of the correlation energy data. Our correlation energy results are 
summarized in Table 3. Additionally, to give some idea concerning the quality 
of basis sets employed in this study also the corresponding SCF energies are 
reported�9 They are fairly close to the appropriate HF limits [71]. 

As regards the correlation energy values calculated in this paper our E ~  results 
for F-,  Ne, and Na § can be directly compared with recent accurate data by 
Jankowski et al. [69, 70]. For all these systems more than 75 per cent of the 
accurate value of E ~  is recovered by the present truncated G TO  basis set 
calculations. Since the second-order correlation energies for 10-electron atomic 
systems seem to be rather close to the corresponding total correlation energies 
similar conclusion holds also for E .... [69, 70]�9 The latter can be considered as 
approximately given by ~corrFTSD-MBPT(4) �9 Of note is the closeness of ~corrFTSD-MBPT(A],--j 

�9 �9 S D - M B P T  " to the mvarlant fourth-order  result E .... (4) obtained according to Wilson's 
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fo rmula  [46]. O n  the o ther  hand  the geometr ic  approximat ion  does not  seem 
to be highly efficient. 

Bo th  four th -o rde r  est imates of the total correlat ion energy  given in Table  3 are 
also fairly close to the c luster-corrected S D - C I  correlat ion energies ESD-~ cI/Ds 
[36-38,  72]. This indicates that  the h igher -order  m a n y - b o d y  effects make  rela- 
tively small contr ibut ions to the total correlat ion energy.  

The  correlat ion energy  results can be convenient ly  analysed in terms of the pair 
contributions.  Similarly to the analysis carried out  for F -  [24] compar ing  the 
present  data  for F- ,  Ne, and Na  § with those of Jankowski  et al. [69, 70] shows 
that  the missing por t ion of the second-order  correlat ion energy  is most ly due to 
the inadequate  descript ion of the inner shells. For  the p-shell  our  second-order  
correlat ion results are fairly close to the cor responding  spd limits [69, 70]. 
Improving  the total correlat ion energy  by some improvemen t  in the descript ion 
of inner shells should not  p roduce  any significant changes in the calculated 
polarizabili ty values. The  ma jo r  factor  which determines  the accuracy of the 
final polarizabili ty results is the basis set flexibility ra ther  than its high efficiency 
in reproducing  accurate  correlat ion energy  values [22, 23, 50, 51, 73, 74]. 

4.2. Dipole Polarizabilities of lO-Electron Atomic Systems 

Corre la t ion correct ions to the C H F  polarizabili ty of 10-elect ron a tomic  systems 
calculated according to the me thod  described in Section 3.2 are collected in 
Table  4. In the same table different approximat ions  for the total correlat ion 

Table 4. Nuclear charge dependence of different correlation contributions to the dipole polarizability a of 
10-electron atomic systems. All polarizability data in a.u. 

Z =  9.0 9,2 9.4 9.6 9.8 10.0 11.0 

O~ 6.32 2.80 1.50 0.88 0.52 0.33 0.056 
O ~ 3 -4.19 -1.54 -0.70 -0.36 -0.19 -0.11 -0.013 
o4Sa ~ 5.08 1.56 0.61 0.28 0.14 0.07 0.006 
(~4 D -2.43 -0.88 -0.41 -0.21 -0.11 -0.06 -0.007 

Estimates of the total correlation contribution 

S D - M B P T  Ocorr (2) 6.32 2.80 1.50 0.88 0.52 0.33 0.056 
S D - M B P T  Ocorr (3) 2.14 1.26 0.80 0.52 0.33 0.22 0.044 

QS~.MBPT (4) 7.21 2.82 1.41 0.80 0.47 0.29 0.049 
Ocorr[2/1]) 2.44 1.34 0.82 0.53 0.33 0.22 0.043 
oSD~MBPT (4) 6.31 2.59 1.34 0.78 0.45 0.29 0.049 
QSDrCI (4) 4.80 1.93 1.00 0.59 0.36 0.23 0.042 
QSD~CI 3.38 1.63 0.93 0.57 0.35 0.23 0.043 
QS~-C~/D 4.94 2.32 1.34 0.83 0.44 0.28 0.049 
QSDrCI/DS 5.78 2.59 1.45 0.87 0.46 0.29 0.050 

a All contributions to the dipole polarizability (O) are calculated according to Eq. (2), i.e. as the 
second-order numerical derivatives of the field-dependent energy. For the explanation of symbols see 
Section 2 
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correction to the dipole polarizability are also presented. Various estimates of 
the total polarizability obtained by combining the CHF data of Table 2 and the 
correlation corrections of Table 4 are presented in Table 5. In order to facilitate 
the analysis of the nuclear charge dependence of these results some of them 
have been plotted against Z in Fig. 1. 

In Table 5 our estimates of the total dipole polarizability of F-,  Ne and Na + are 
compared with available theoretical data and with experimental values. Among 
the theoretical reference results only those which have been obtained at the 
correlated level are considered [5, 22, 24, 51, 75-77]. As a matter of fact the 
theoretical data for the F-  polarizability represent the ranges for its expected 
value. The corresponding data for Ne seem to be far more accurate and certain. 
Similar comments can be made as regards the experimental polarizability values. 
The dipole polarizability of Ne is known with a rather high accuracy [78, 80, 82]. 
For F-  and Na + the commonly accepted values are the empirical estimates 
obtained either from the solution data or from the study of ionic crystals [25, 26]. 
As discussed previously [5, 22-24] they seem to be much too low in the case of 
the fluoride ion and presumably too high in the case of Na +. Hence, on discussing 
both the convergence and the accuracy of our MBPT calculations one should 
primarily refer to the data for Ne. 

Q(a.u.) 

15 QSD-MBPT(~) 1 

10 QCHF~~ 
\ \  

Fig. 1. Nuclear charge (Z) dependence of different estimates of the dipole polarizability of 10-electron 
atomic systems and the Z- dependence of SD-MBPT correlation corrections to the CHF polarizability. 
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It follows from the final polarizability results presented in Table 5 that the 
fourth-order SD-MBPT scheme is capable of predicting the right polarizability 
value of Ne. The results obtained from the ordinary Taylor series and the formula 
of Wilson [46] are practically the same and almost coincide with the correspond- 
ing experimental data. On the other hand the SD-CI scheme gives a too low 
value of the Ne atom polarizability. On inspecting the data of Table 4 one finds 
that this is mostly caused by the size-inconsistency of the SD-CI approach. The 
contribution of the fourth-order renormalization term is quite significant. Cor- 
recting the SD-CI result according to Davidson and Siegbahn [36-38] brings 
about nearly complete agreement with the experimental result. Let us also note 
that for Ne the convergence of the SD-MBPT series is quite good. The direct 
fifth-order contribution QSD would lower the present fourth-order results by 
about 0.01 a.u. 

The fourth-order SD-MBPT approach appears to be also very accurate in the 
case of Na +. The convergence of the SD-MBPT series is in this case even better 
than that for the Ne atom. Moreover, the direct fifth-order SD-MBPT correction 
to the dipole polarizability tensor becomes negligibly small. Hence, the fourth- 
order results QSD'MBPT(4) and QSD-MBPT(~) possess sufficient accuracy. 
Obviously, these results do not account for the contribution of triple and quad- 
ruple excitations. However, at least the latter do not seem to be highly important 
for dipole polarizabilities of neutral species and positively charged ions [6, 7]. 
According to our previous results [8, 9, 18] it can be expected that a considerable 
portion of the contribution due to quadrupole excitations is cancelled out by 
the conjoint part of the renormalization term [30, 34]. 

On passing to smaller values of the nuclear charge all SD-MBPT contributions 
to the correlation correction to the dipole polarizability significantly increase 
and the convergence of the SD-MBPT series becomes much poorer than for Ne 
and Na +. Also the absolute value of the fourth-order renormalization contribu- 
tion becomes more important than for neutral and positively charged systems. 
Therefore, the SD-CI corrections to dipole polarizabilities of negatively charged 
species need to be corrected for the erratic treatment of unliked clusters [36-38]. 
For the fluoride ion the corresponding corrections due to Davidson [35] and 
Siegbahn [36] result in a considerable modification of the SD-CI result. Finally, 
the truncated Taylor series ..~/")SD-MBPT(A)corr .,--j, the formula of Wilson and the cluster 
corrected SD-CI approach give fairly similar values for the total correlation 
contribution to the dipole polarizability of F-. 

Using the invariant formula of Wilson [46] can be interpreted as performing 
some approximate summation of the higher-order SD-MBPT contributions. On 
the other hand the cluster corrected quantity QcSDr CI/Ds should not be significantly 
affected by the contribution of the higher-order renormalization terms. Since 
both these estimates of Q .... are relatively dose, one can expect that the total 
SD-MBPT correction should be in the range between ",-ecorrl"~SD-MBPT('~'I',--' and 
QSD~O/DS. This is obviously the correct result in the case of Ne and Na + but the 
accuracy of this estimate may become poorer for lower values of Z. 
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One of the characteristic features of the SD-MBPT corrections to the dipole 
polarizability is that there is a near-cancellation of the third- and fourth-order 
contributions. This observation gives some support to the validity of the second- 
order corrected results [8, 9, 19] though the SD-MBPT correlation perturbation 
series for polarizabilities may not have an alternating character in some other 
cases [47]. Nonetheless, the second-order correlation correction can provide a 
reasonable and useful information about Q ..... On the other hand, the near- 
cancellation of QD and QS~, requires the consideration of other terms involved 
in Q4 as well as a more careful study of the higher-order contributions. In the 
case of the fluoride ion the contribution due to strongly coupled quadruple 
excitations amounts to -2.15 a.u. and its addition results in lowering the estimate 
of Q .... to about 3.6 a.u. and about 4.2 a.u. for the cluster corrected DS-CI 
approach and the fourth-order SD-MBPT results following from Wilson's for- 
mula, respectively. Also the fifth-order direct SD-MBPT correction to the dipole 
polarizability of F- is quite significant and amounts to -2.97 a.u. However, 
because of the alternating character of the SD-MBPT series for Q ..... the effects 
due to QS~, will be considerably cancelled in higher orders. Hence, the estimates 
based on either f-)SD-CI/DS (--)SD-MI3PT(~] -~orr or . . . . .  , , - - j  and the approximate value of the 
contribution due to quadruple excitations appear to be quite appropriate. When 
added to the CHF value of Table 2 they lead finally to the dipole polarizability 
of the fluoride ion in the range between 14.3 a.u. and 14.9 a.u. The correctness 
of the latter estimates of the free fluoride ion polarizability is confirmed by the  
results of recent FPT complete active space (CAS) SCF [83-85] calculations for 
the same system [65]. 

On using the same approximations for Ne one obtains a polarizability value of 
about 2.6 a.u. The addition of the contribution due to quadruple excitations 
spoils the spectacular agreement with the experimental value observed for our 
fourth-order SD-MBPT data. However, some worsening of the final result in a 
more appropriate approach appears to be quite understandable. One should 
remember that all calculations are carried out within the truncated basis set 
approximation. Also the higher-order many-body effects, though presumably 
rather small for neutral systems of the size of the Ne atom, can be of some 
importance. Hence, it is rather surprising to shoot right at the experimental 
polarizability value [51, 76] in spite of a number of different approximations. 
On the other hand, estimating the dipole polarizability of Ne at 2.6 a.u. results 
in less than 3 per cent error in comparison with the experimental value. It 
appears that a better accuracy of theoretical calculations of the dipole polarizabil- 
ity is hardly possible at the moment. 

The study of the Z-dependence of the electron correlation contribution to the 
dipole polarizability of simple atomic systems reveals several important features 
of the SD-MBPT series and indicates the differences and similarities among the 
correlation corrections for neutral and charged species. Our recent studies on 
the applicability of the SD-MBPT method to the calculation of correlated dipole 
polarizabilities show the usefulness of the fourth-order scheme in the case of 
neutral atoms and molecules [9, 18]. However, treating the negatively charged 
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systems is far more difficult; particular care has to be taken of both the appropriate 
choice of the basis set functions and the convergence of the MBPT series. 
Accurate calculations for negative ions may also require the explicit consideration 
of the effect of higher then double substitutions. 

It also follows from the present data that the renormalization terms which are 
included in the SD-C1 approach need to be taken into account when calculating 
the correlation corrections to electric properties of many-electron systems. The 
unwanted contribution due to unlinked clusters is automatically accounted for 
within the SD-MBPT scheme, while the SD-CI results can be corrected a 
posteriori [36] by using the correction schemes due to Davidson [37] and 
Siegbahn [38]. It is important to stress that for all isoelectronic systems studied 
in this paper the contribution of Q4 D is negative and artificially lowers the final 
QSD-Ci values for the dipole polarizability. This is also the reason that the SD-CI corr 
polarizability of F- calculated recently by Botschwina [77] is much lower than 
the present estimates. 

The nuclear charge dependence of correlation corrections to the dipole polariza- 
bility of isoelectronic species reveals the importance of the appropriate treatment 
of the pertinent correlation effects for negatively charged systems. The total 
correlation correction to the CHF polarizability of the fluoride ion is certainly 
dominated by the lower-order terms in the SD-MBPT series. However, to obtain 
the accurate result one has to consider all different contributions, including those 
due to higher than double excitations. The final result follows to some extent 
from near-cancellations of different contributions. This is far less important in 
the case of neutral and positively charged species. For these systems the ordinary 
SD-MBPT scheme gives quite acceptable results and can be safely used for 
predicting the unknown polarizability data. 

The implications of the present study for the estimation of the true value of the 
fluoride ion dipole polarizability follow from the plots presented in Fig. 1. It 
can be seen that a small amount of the charge transfer between the ion and its 
surrounding may considerably reduce the apparent polarizability value. The 
corresponding increase in the dipole polarizability of positive ions is much 
smaller. Hence, on analysing the solution data [25, 26] in terms of polarizabilities 
of separate ions one can rather safely assume that the positive ion polarizability 
in solution is fairly close to that of the corresponding isolated system. Moreover, 
the present study confirms our previous [5, 22-24] conclusions concerning the 
correct value of the dipole polarizability of F-. Taking into account the SD-MBPT 
results and the effect of higher excitations as well as some, presumably positive, 
contribution due to the conjoint part of the renormalization corrections one can 
estimate the dipole polarizability of the free fluoride ion at about 14.0 + 16.0 a.u. 

Finally, let us mention some implications of the present study for the calculation 
of intermolecular interaction potentials. It seems that fairly reasonable data can 
be achieved from the SD-CI calculations in the case of neutral or positively 
charged subsystems. On the contrary, the corresponding calculations for systems 
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i n v o l v i n g  n e g a t i v e l y  ch a rg ed  species  c an  b e  se r ious ly  a f fec ted  b y  the  s i z e - i n c o n -  
s i s t ency  of the  S D - C I  s ch eme .  Th i s  is p a r t i c u l a r l y  i m p o r t a n t  for  t heo re t i c a l  
p r e d i c t i o n s  for  w e a k l y  i n t e r a c t i n g  subsys t ems .  
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